Sains
Malaysiana 54(8)(2025): 1973-1984
http://doi.org/10.17576/jsm-2025-5408-08
PM2.5-Bound Trace Metals within
Vicinity of a Coal-Fired Power Plant: Source Apportionment and Health Risk
Assessment
(Logam Surih Terikat PM2.5 dalam
Persekitaran Loji Janakuasa Arang Batu: Pembahagian Sumber dan Penilaian Risiko
Kesihatan)
SUFIAN ABD RAHMAN1, MUHAMMAD IKRAM A WAHAB1,
NOR FADILAH RAJAB3,* , MOHD TALIB LATIF2 & MAZRURA
SAHANI1
1Centre for Toxicology and Health Risk Studies
(CORE), Faculty of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja
Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
2Department of Earth Sciences and Environment,
Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi,
Selangor, Malaysia
3Centre for Healthy Aging and Wellness, Faculty
of Health Sciences, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz,
50300 Kuala Lumpur, Malaysia
Received:
16 December 2024/Accepted: 18 June 2025
Abstract
A
coal-fired power plant is an industry known for its environmental health
effects due to emissions containing pollutants like PM2.5. Studies
show PM2.5 contains multiple hazardous pollutants, including metals.
This study was conducted in Klang, Malaysia, to assess the concentration of
trace metals in PM2.5 near a coal-fired power plant, identify their
sources, and evaluate human health risks. The average PM2.5 concentration was 14.42 ± 8.7 µg/m³, with maximum levels (43.15 µg/m³)
exceeding the Malaysian Ambient Air Quality Standard. PM2.5 samples
were collected from June to November 2018 and extracted using sonication in
ultrapure water. Eighteen trace metals were analysed using ICP-MS, and the
results were used for Principal Component Analysis (PCA) for source
identification. PCA showed that the trace metals originated from sea salt and
biomass burning (37%), coal combustion and vehicular emissions (34%), oil
combustion (17%), and soil dust (12%). A health risk assessment (HRA) for
selected metals indicated that carcinogenic and non-carcinogenic risks were
generally within acceptable limits. However, the Hazard Quotient (HQ) for
nickel exceeded the acceptable limit at one point (HQmax = 2.24). A
limitation of this study is that its sampling period was confined to the
southwest monsoon and intermonsoon seasons, so the findings may not be
representative of the entire year. The findings highlight the importance of
managing industrial emissions to improve air quality, aligning with UN
Sustainable Development Goals for Affordable and Clean Energy (SDG 7) and
Climate Action (SDG 13).
Keywords: HRA;
power plant; PM2.5; source apportionment
Abstrak
Stesen
jana kuasa arang batu adalah industri yang dikenali dengan kesan terhadap
kesihatan persekitaran akibat pelepasan yang mengandungi bahan pencemar seperti
PM2.5. Kajian menunjukkan PM2.5 mengandungi pelbagai
bahan pencemar berbahaya, termasuk logam. Kajian ini dijalankan di Klang,
Malaysia, untuk menilai kepekatan logam surih dalam PM2.5 berhampiran stesen jana kuasa arang batu, mengenal pasti puncanya dan menilai
risiko kesihatan manusia. Purata kepekatan PM2.5 adalah 14.42 ± 8.7
µg/m³, dengan tahap maksimum (43.15 µg/m³) melebihi Piawai Kualiti Udara Ambien
Malaysia. Sampel PM2.5 dikumpulkan dari Jun hingga November 2018 dan
diekstrak menggunakan kaedah sonikasi dalam air ultratulen. Lapan belas logam
surih dianalisis menggunakan ICP-MS dan hasilnya digunakan untuk Analisis
Komponen Utama (PCA) bagi mengenal pasti punca. PCA menunjukkan bahawa logam
surih berpunca daripada garam laut dan pembakaran biojisim (37%), pembakaran
arang batu dan pelepasan kenderaan (34%), pembakaran minyak (17%) dan habuk
tanih (12%). Penilaian risiko kesihatan (HRA) untuk logam terpilih menunjukkan
bahawa risiko karsinogenik dan bukan karsinogenik secara amnya berada dalam had
yang boleh diterima. Walau bagaimanapun, Darjah Bahaya (HQ) untuk nikel
melebihi had yang boleh diterima pada satu ketika (HQmaks = 2.24). Satu batasan
kajian ini ialah tempoh pensampelannya terhad kepada musim monsun barat daya
dan antara monsun, justeru keputusan ini mungkin tidak mewakili keseluruhan
tahun. Keputusan kajian ini juga menekankan kepentingan pengurusan pelepasan
industri untuk meningkatkan kualiti udara, selari dengan Matlamat Pembangunan
Mampan PBB, terutamanya bagi Tenaga Mampu Milik dan Bersih (SDG 7) dan Tindakan
terhadap Iklim (SDG 13).
Kata kunci: HRA;
pembahagian sumber; PM2.5; stesen janakuasa
REFERENCES
Agency
for Toxic Substances and Disease Registry (ATSDR). 2018. Minimal Risk Levels (MRLs) –
For Professionals. https://www.atsdr.cdc.gov/mrls/index.html (Accessed on
19 December 2023).
Asif, Z., Chen, Z., Wang, H. & Zhu, Y.
2022. Update on air pollution control strategies for coal-fired power plants. Clean
Technologies and Environmental Policy 24: 2329-2347.
ASTM International. 2021. Standard Test
Method for Determination of Elements in Airborne Particulate Matter by
Inductively Coupled Plasma–Mass Spectrometry (ASTM D7439-21). West
Conshohocken, PA: ASTM International.
Bernama. 2018. Forest Fires Rage in Sumatra,
Raising Fears of Haze. https://www.nst.com.my/world/2018/07/392384/forest-fires-rage-sumatra-raising-fears-haze
(Accessed on 15 June 2022).
Bleam, W.F. 2017. Soil and Environmental
Chemistry. 2nd ed. Netherlands: Elsevier.
Chen, X., Yang, T., Wang, Z., Hao, Y., He, L.
& Sun, H. 2020. Investigating the impacts of coal-fired power plants on
ambient PM2.5 by a combination of a chemical transport model and
receptor model. Science of The Total Environment 727: 138407.
Chio, C.P., Lo, W.C., Tsuang, B.J., Hu, C.C.,
Ku, K.C., Chen, Y.J., Lin, H.H. & Chan, C.C. 2019. Health impact assessment
of PM2.5 from a planned coal-fired power plant in Taiwan. Journal
of the Formosan Medical Association 118(11): 1494-1503.
Cropper, M., Cui, R., Guttikunda, S., Hultman,
N., Jawahar, P., Park, Y., Yao, X. & Song, X.P. 2021. The mortality impacts
of current and planned coal-fired power plants in India. Proceedings of the
National Academy of Sciences of the United States of America 118(5):
e2017936118.
Du, X., Jin, X., Zucker, N., Kennedy, R. &
Urpelainen, J. 2020. Transboundary air pollution from coal-fired power
generation. Journal of Environmental Management 270: 110862.
Duan, J., Tan, J., Wang, S., Hao, J. &
Chai, F. 2012. Size distributions and sources of elements in particulate matter
at curbside, urban and rural sites in Beijing. Journal of Environmental
Sciences 24(1): 87-94.
Duan, X., Yan, Y., Li, R., Deng, M., Hu, D.
& Peng, L. 2021. Seasonal variations, source apportionment, and health risk
assessment of trace metals in PM2.5 in the typical industrial city
of Changzhi, China. Atmospheric Pollution Research 12(1): 365-374.
Ebenstein, A., Fan, M., Greenstone, M., He, G.
& Zhou, M. 2017. New evidence on the impact of sustained exposure to air
pollution on life expectancy from China’s Huai River Policy. Proceedings of
the National Academy of Sciences of the United States of America 114(39): 10384-10389.
EIA. 2020. Electricity explained.
https://www.eia.gov/energyexplained/electricity/electricity-and-the-environment.php
(Accessed on 22 December 2023).
Fomba, K.W., van Pinxteren, D., Müller, K.,
Spindler, G. & Herrmann, H. 2018. Assessment of trace metal levels in
size-resolved particulate matter in the area of Leipzig. Atmospheric
Environment 176: 60-70.
González, L.T., Longoria Rodríguez, F.E.,
Sánchez-Domínguez, M., Cavazos, A., Leyva-Porras, C., Silva-Vidaurri, L.G.,
Askar, K.A., Kharissov, B.I., Villarreal Chiu, J.F. & Alfaro Barbosa, J.M.
2017. Determination of trace metals in TSP and PM2.5 materials
collected in the Metropolitan area of Monterrey, Mexico: A characterization
study by XPS, ICP-AES and SEM-EDS. Atmospheric Research 196: 8-22.
Hao, Y., Meng, X., Yu, X., Lei, M., Li, W.,
Shi, F., Yang, W., Zhang, S. & Xie, S. 2018. Characteristics of trace
elements in PM2.5 and PM10 of Chifeng, northeast China: Insights
into spatiotemporal variations and sources. Atmospheric Research 213:
550-561.
IARC. 2022. List of Classifications – IARC
monographs on the identification of carcinogenic hazards to humans
https://monographs.iarc.who.int/list-of-classifications (Accessed on 13
September 2022).
International Union of Pure and Applied
Chemistry (IUPAC). 2016. Glossary of terms used in extraction (IUPAC
Recommendations 2016). Pure and Applied Chemistry 88(6): 517-555.
Jain, S., Sharma, S.K., Choudhary, N., Masiwal,
R., Saxena, M., Sharma, A., Mandal, T.K., Gupta, A., Gupta, N.C. & Sharma,
C. 2017. Chemical characteristics and source apportionment of PM2.5 using PCA/APCS, UNMIX, and PMF at an urban site of Delhi, India. Environmental
Science and Pollution Research 24(17): 14637-14656.
Jamhari, A.A., Sahani, M., Latif, M.T., Chan,
K.M., Tan, H.S., Khan, M.F. & Mohd Tahir, N. 2014. Concentration and source
identification of Polycyclic Aromatic Hydrocarbons (PAHs) in PM10 of
urban, industrial and semi-urban areas in Malaysia. Atmospheric Environment 86: 16-27.
Jeong, C-H., Wang, J.M., Hilker, N., Debosz,
J., Sofowote, U., Su, Y., Noble, M., Healy, R.M., Munoz, T.,
Dabek-Zlotorzynska, E., Celo, V., White, L., Audette, C., Herod, D. &
Evans, G.J. 2019. Temporal and spatial variability of traffic-related PM2.5 sources: Comparison of exhaust and non-exhaust emissions. Atmospheric
Environment 198: 55-69.
Juda-Rezler, K., Reizer, M., Maciejewska, K.,
Błaszczak, B. & Klejnowski, K. 2020. Characterization of atmospheric PM2.5 sources at a Central European urban background site. Science of The Total
Environment 713: 136729.
Kapar Energy. 2022. Generating Facility.
https://kaparenergy.com.my/generating-facility/ (Accessed on 14 July 2022).
Khan, M.F., Hirano, K. & Masunaga, S. 2010.
Quantifying the sources of hazardous elements of suspended particulate matter
aerosol collected in Yokohama, Japan. Atmospheric Environment 44(21-22):
2646-2657.
Khan, M.F., Sulong, N.A., Latif, M.T., Nadzir,
M.S.M., Amil, N., Hussain, D.F.M., Lee, V., Hosaini, P.N., Shaharom, S.,
Yusoff, N.A.Y.M., Hoque, H.M.S., Chung, J.X., Sahani, M., Mohd Tahir, N.,
Juneng, L., Maulud, K.N.A., Abdullah, S.M.S., Fujii, Y., Tohno, S. &
Mizohata, A. 2016. Comprehensive assessment of PM2.5 physicochemical
properties during the Southeast Asia dry season (southwest monsoon). Journal
of Geophysical Research: Atmospheres 121(24): 14,589-14,611.
Kim, S., Kim, T.Y., Yi, S.M. & Heo, J.
2018. Source apportionment of PM2.5 using positive matrix
factorization (PMF) at a rural site in Korea. Journal of Environmental
Management 214: 325-334.
Ledoux, F., Kfoury, A., Delmaire, G., Roussel,
G., El Zein, A. & Courcot, D. 2017. Contributions of local and regional
anthropogenic sources of metals in PM2.5 at an urban site in
northern France. Chemosphere 181: 713-724.
Li, Y., Chang, M., Ding, S., Wang, S., Ni, D.
& Hu, H. 2017. Monitoring and source apportionment of trace elements in PM2.5:
Implications for local air quality management. Journal of Environmental
Management 196: 16-25.
Liu, J., Chen, Y., Chao, S., Cao, H., Zhang, A.
& Yang, Y. 2018. Emission control priority of PM2.5-bound heavy
metals in different seasons: A comprehensive analysis from health risk
perspective. The Science of the Total Environment 644: 20-30.
Liu, Y., Xing, J., Wang, S., Fu, X. &
Zheng, H. 2018. Source-specific speciation profiles of PM2.5 for
heavy metals and their anthropogenic emissions in China. Environmental
Pollution 239: 544-553.
Ma, Q., Cai, S., Wang, S., Zhao, B., Martin, R.V.,
Brauer, M., Cohen, A., Jiang, J., Zhou, W., Hao, J., Frostad, J., Forouzanfar,
M.H. & Burnett, R.T. 2017. Impacts of coal burning on ambient PM2.5 pollution in China. Atmospheric Chemistry and Physics 17(7): 4477-4491.
Mahey, S., Kumar, R., Sharma, M., Kumar, V.
& Bhardwaj, R. 2020. A critical review on toxicity of cobalt and its
bioremediation strategies. SN Applied Sciences 2(7): 1279.
MIMA. 2021. The Prosperity of the Straits of
Malacca as a Major Maritime Trade Route. https://www.mima.gov.my/news/the-prosperity-of-the-straits-of-malacca
(Accessed on 5 July 2022).
Mohammadi, A., Hajizadeh, Y., Taghipour, H.,
Mosleh Arani, A., Mokhtari, M. & Fallahzadeh, H. 2018. Assessment of metals
in agricultural soil of surrounding areas of Urmia Lake, northwest Iran: A
preliminary ecological risk assessment and source identification. Human and
Ecological Risk Assessment: An International Journal 24(8): 2070-2087.
Motesaddi Zarandi, S., Shahsavani, A.,
Khodagholi, F. & Fakhri, Y. 2019. Concentration, sources and human health
risk of heavy metals and polycyclic aromatic hydrocarbons bound PM2.5 ambient air, Tehran, Iran. Environmental Geochemistry and Health 41(3):
1473-1487.
National Research Council. 2004. Review
of the Army's Technical Guides on Assessing and Managing Chemical Hazards to
Deployed Personnel. Washington: The National Academies Press.
https://doi.org/10.17226/10974
Nuran Ercal, B.S.P., Hande Gurer-Orhan, B.S.P.
& Nukhet Aykin-Burns, B.S.P. 2001. Toxic metals and oxidative stress part
I: Mechanisms involved in metal induced oxidative damage. Current Topics in
Medicinal Chemistry 1(6): 529-539.
Park, J., Park, E.H., Schauer, J.J., Yi, S-M.
& Heo, J. 2018. Reactive oxygen species (ROS) activity of ambient fine
particles (PM2.5) measured in Seoul, Korea. Environment
International 117: 276-283.
Peng, X., Shi, G., Liu, G., Xu, J., Tian, Y.,
Zhang, Y., Feng, Y. & Russell, A.G. 2017. Source apportionment and heavy
metal health risk (HMHR) quantification from sources in a southern city in
China, using an ME2-HMHR model. Environmental Pollution 221: 335-342.
Roper, C., Nguyen, T.B., Rohr, J.M.,
Krishnakumar, M.S., Simpson, C.D., Paulsen, M.G., Fruin, S.A., Sioutas, C.
& Geller, M.D. 2019. PM2.5filter extraction methods: Implications for chemical and
toxicological analyses. Environmental
Science & Technology 53(24): 14575-14585.
Singh, N., Murari, V., Kumar, M., Barman, S.C.
& Banerjee, T. 2017. Fine particulates over South Asia: Review and
meta-analysis of PM2.5 source apportionment through receptor model. Environmental
Pollution 223: 121-136.
Song, Y., Zhang, Y., Feng, L., Chan, C.K. &
Zheng, M. 2006. Source apportionment of PM2.5 in Beijing using
principal component analysis/absolute principal component scores and UNMIX. Science
of the Total Environment 372(1): 278-286.
Tang, X., Chen, X. & Tian, Y. 2017.
Chemical composition and source apportionment of PM2.5 - a case
study from one-year continuous sampling in the Chang-Zhu-Tan urban
agglomeration. Atmospheric Pollution Research 8(5): 885-899.
Tao, J., Gao, J., Zhang, L., Zhang, R., Che,
H., Zhang, Z., Lin, Z., Jing, J., Cao, J. & Hsu, S.C. 2014. PM2.5 pollution in a megacity of Southwest China: Source apportionment and
implication. Atmospheric Chemistry and Physics 14(16): 8679-8699.
Uberoi, M. & Shadman, F. 1991.
High-temperature removal of cadmium compounds using solid sorbents. Environmental
Science & Technology 25(7): 1285-1289.
United Nations. 2023. The 17 Goals. https://sdgs.un.org/goals (Accessed on 4 January 2023).
U.S. Environmental Protection Agency. 2016. Validation
and Peer Review of U.S. Environmental Protection Agency Chemical Methods of
Analysis. Washington, DC: U.S. Environmental Protection Agency.
US EPA. 2009. Risk
Assessment Guidance for Superfund Volume I: Human Health Evaluation Manual
(Part F, Supplemental Guidance for Inhalation Risk Assessment).
https://semspub.epa.gov/work/HQ/140530.pdf (Accessed on 22 December 2023).
US EPA. 1999. Determination
of metals in ambient particulate matter using inductively coupled plasma (ICP)
spectroscopy.
https://www.epa.gov/sites/default/files/2019-11/documents/mthd-3-4.pdf (Accessed
on 22 December 2023).
US EPA. 1989. Risk assessment guidance for
superfund Volume I human health evaluation manual (Part A).
https://www.epa.gov/sites/default/files/2015-09/documents/rags_a.pdf
(Accessed on 22 December 2023).
Valko, M., Morris, H. & Cronin, M. 2005.
Metals, toxicity and oxidative stress. Current Medicinal Chemistry 12(10): 1161-1208.
Vidal, M., Moreno-Jiménez, A., Madrid, Y. &
Cámara, C. 2017. in vitro investigations of human bioaccessibility from
reference materials using simulated lung fluids. Talanta 165: 658-665.
Zhong, C., Yang, Z., Jiang, W., Hu, B., Hou,
Q., Yu, T. & Li, J. 2016. Ecological geochemical assessment and source
identification of trace elements in atmospheric deposition of an emerging
industrial area: Beibu Gulf economic zone. Science of The Total Environment 573: 1519-1526.
*Corresponding
author; email: nfadilah@ukm.edu.my
|